Quantum phase analysis of field-free molecular alignment
نویسندگان
چکیده
منابع مشابه
Phase-dependent field-free molecular alignment and orientation
Chaochao Qin,1,* Yuzhu Liu,2,3,† Xianzhou Zhang,1 and Thomas Gerber2 1Department of Physics, Henan Normal University, 453007 Xinxiang, People’s Republic of China 2Paul Scherrer Institute, 5232 Villigen, Switzerland 3College of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, 210044 Nanjing, P. R. China (Received 19 June 2014; published 24 Novembe...
متن کاملField-free molecular alignment control of filamentation
With an approach of controlling the nonlinearity of medium rather than the light field, the effect of field-free molecular alignment on filamentation and resulting white-light generation is studied. This is done by measuring the rotational wavepacket evolution of nitrogen molecules after passing of a femtosecond laser pump pulse by observing the nonlinear propagation dynamics of a variably dela...
متن کاملField-free three dimensional molecular axis alignment.
We investigate strategies for field-free three dimensional molecular axis alignment using strong nonresonant laser fields under experimentally realistic conditions. Using the polarizabilites and rotational constants of an asymmetric top rotor molecule (ethene, C2H4), we consider three different methods for axis alignment of a Boltzmann distribution of rotors at 4 K. Specifically, we compare the...
متن کاملIdentification of BKCa channel openers by molecular field alignment and patent data-driven analysis
In this work, we present the first comprehensive molecular field analysis of patent structures on how the chemical structure of drugs impacts the biological binding. This task was formulated as searching for drug structures to reveal shared effects of substitutions across a common scaffold and the chemical features that may be responsible. We used the SureChEMBL patent database, which prov...
متن کاملField-Free Alignment and Strong Field Control of Molecular Rotors
Methods of controlling molecular rotations using linearly polarized femtosecond and picosecond pulses are considered and analyzed theoretically. These laser pulses, typically in the infrared, are highly non-resonant with respect to the electronic degrees of freedom of the molecules and have intensities of ∼ 10 to 10 W/cm. It is shown how these laser pulses can force small linear molecules to al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2012
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.86.051401